skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sabzeghabae, Ariana_Nushin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Titanium nitride nanoparticles have become a research interest due to their distinguished optical and photothermal properties. Furthermore, the search for nanoparticle solutions with tunable nonlinear optical properties for laser‐based applications is critical. More specifically, third order optical nonlinearities such as reverse saturable absorption, optical liming, and self‐focusing are important in the biomedical and electronics fields. The optical nonlinearities of titanium nitride plasmonic nanoparticles are investigated as a function of material concentration in water solutions. Furthermore, the effect of nanoparticle clustering on optical nonlinearities is investigated by fabricating micrometer‐sized clusters of ≈50 nm titanium nitride particles. These studies demonstrate that the nonlinear absorption coefficient increases linearly with concentration. However, clusters require higher concentrations compared to the freestanding nanoparticles to exhibit similar nonlinear absorption coefficient and optical density. Similarly, the optical limiting threshold for titanium nitride nanoparticles appears to be lower compared to the cluster solutions, which is impacted by the collective scattering of nanoparticles and high reverse saturable absorption. In addition, self‐focusing is observed in the continuous resonant regime. This study provides an in‐depth analysis of the nonlinear optical properties of titanium nitride, with relevant consequences for applications such as sensor protection and photothermal therapy. 
    more » « less